Sunday, July 16, 2017

Olivia Judson On Energy Expansions Of Evolution

Nature Ecology and Evolution has published a fine perspective by evolutionary biologist Olivia Judson on energy availability and evolutionary transitions on earth -

" The history of the life–Earth system can be divided into five ‘energetic’ epochs, each featuring the evolution of life forms that can exploit a new source of energy. These sources are: geochemical energy, sunlight, oxygen, flesh and fire. The first two were present at the start, but oxygen, flesh and fire are all consequences of evolutionary events. Since no category of energy source has disappeared, this has, over time, resulted in an expanding realm of the sources of energy available to living organisms and a concomitant increase in the diversity and complexity of ecosystems. These energy expansions have also mediated the transformation of key aspects of the planetary environment, which have in turn mediated the future course of evolutionary change.Using energy as a lens thus illuminates patterns in the entwined histories of life and Earth, and may also provide a framework for considering the potential trajectories of life–planet systems elsewhere."

Coincidentally, I just finished reading Nick Lane's book The Vital Question, which covers the first three sources of energy discussed in this article. Nick Lane writes about energy currencies of the cell and the constraints it places on the early evolution of life on earth. Why don't bacteria become morphologically larger and more complex?... because there are intrinsic constraints on the energy available for ATP synthesis.  You'll have to read Nick Lane's book for a detailed account but Olivia Judson's essay mentions this and more. The other two, animals and fire, encompass the evolution of complex multicellular life and their impact on evolutionary arms races and ecosystem changes.

..and what about life on other planets?..

"As this is the only life–planet system we currently know of, it is impossible to know how representative it is of life–planet systems in general. But if the development of other life–planet systems requires a similar series of energy expansions, the framework presented here suggests a way to anticipate the paths that such systems might take. For instance, if a planet has only geochemical energy— perhaps because it is far from its star, or because it is a nomad and has no star at all—any life present may have “a limited future in terms of the heights it could achieve”. Or suppose a planet is unable to accumulate oxygen. This could happen if living organisms never evolve a way of splitting water to produce the gas in the first place, but even if they do, the planet itself may have characteristics that prevent oxygen from ever building up. Without oxygen, the geological, ecological and evolutionary potential of a life–planet system is likely to be constrained, even if life forms analogous to eukaryotes in their energy-harnessing power (Box 2) were to evolve. Conversely, some planets might be able to accumulate new forms of energy, and life forms able to take advantage of them, much fasterthan Earth has."

Open Access.

Saturday, July 8, 2017

Field Photo: A Bend In The Rocks

I saw this textbook example of a fold in the Lassar Yankti valley, about 2 kilometers south of Tidang village in the Kumaon Himalaya.


Consider how rocks bend and deform in response to stress. Blue arrows denote the direction of maximum compressive stress perpendicular to the fold axis. As rocks fold, the convex portion of the fold will experience tensile forces and fractures parallel to the axial plane develop. Notice also conjugate stress fractures (black arrow). Since this is a loose boulder I cannot assign actual directions to the stress field.

The graphic below summarizes the typical fracture patterns found in folded rocks. How many of these can you identify in the fold above?


Source: Applied Hydrogeology of Fractured Rocks

My Himalayan treks over the past few years have taken me on a walk across almost the entire thickness of the Greater Himalayan Sequence. As I mentioned in an earlier post, the GHS is bounded at its base by the Main Central Thrust and at the top by the South Tibetan Detachment. It shows an "inverted" metamorphic sequence. This means that the grade of metamorphism increases as one climbs to higher structural levels. Finally, sillimanite and kyanite grade metamorphic rocks transition into a zone of partial melting and leucogranite intrusions. Above this level the grade of metamorphism decreases to biotite grade and then to a finer grained phyllite grade. One conspicuous structural feature of the GHS is that large folds are very rare. Instead, from the base right up to the zone of partial melting the GHS exhibits a homoclinal northerly dip as seen in the picture below.


Within these northerly dipping slabs, small scale ductile folding in high grade gneiss and migmatites can be seen (picture below), but the slabs themselves are not contorted into mountain face scale folds.


Large isoclinal and recumbent folding is present only in the uppermost structural levels of the GHS in the phyllite grade rocks above the zone of partial melting. The picture below shows tightly folded phyllite grade metamorphic rocks north of the village of Baaling in the Darma Valley.

 
And this splendid recumbent fold is exposed at village Dantu.


Why is large scale folding rare to absent over much of the thickness of the GHS? Could the movement of the South Tibetan Detachment cause folding in the underlying phyllites?

These are some of the niggling questions I am struggling with. I still have much to learn about Himalayan geology. I need to go there with a structural geologist!

Finally, a view of the outcrops from which was derived the textbook quality folded phyllite.